This course contains the course contents of Hands-on Virtual Workshop on Python and R for Data Science and Machine Learning, Batch-7.
Course Outline
Introduction: An introduction to machine learning, supervised and unsupervised learning, the future of machine learning, and how to download secondary data from the Internet.
Python for Data Science & Machine Learning
Environment Setup for Python: 1. Google Colab setup, 2. Google Colab interface overview, 3. Jupyter Notebook setup, 4. Jupyter Notebook interface overview.
Python Basics for Data Science & Machine Learning: 1. lists and tuples, 2. Flow control statements, 3. Functions.
Data Preprocessing in Python: 1. Importing dataset, 2. Data cleaning, 3. Uses of Pandas, Numpy, Matplotlib, and Scikit-learn libraries, 4. Encoding categorical data, 5. Splitting dataset, 6. Feature scaling.
Data Visualization Using Python: 1. Scatter plot, 2. Boxplot, 3. Histogram, 4. Line plot.
Building Some Useful Machine Learning Models Using Python: 1. Simple linear regression, 2. Multiple linear regression, 3. Logistic regression, 4. K-means clustering, 5. Principal component analysis.
R for Data Science & Machine Learning
Environment Setup for R: 1. R Setup, 2. RStudio Setup, 3. RStudio interface overview.
Data Preprocessing in R: 1. Importing dataset, 2. Encoding categorical data, 3. Splitting dataset, 4. Feature scaling
Data Visualization Using R: 1. Scatter plot, 2. Boxplot, 3. Histogram, 4. Line plot.
Building Useful Machine Learning Models Using R: 1. Simple linear regression, 2. Multiple linear regression, 3. Decision tree regression, 4. Random Forest regression, 5. Naive Bayes, 6. Decision tree classification, 7. Random Forest classification, 8. Natural language processing, 9. Principal component analysis, 10. XGBoost
Course Features
- Lectures 66
- Quizzes 7
- Duration Lifetime access
- Skill level All levels
- Language English
- Students 113
- Certificate No
- Assessments Yes
Curriculum
- 3 Sections
- 66 Lessons
- Lifetime
- Orientation Section4
- PDSML Section37
- 2.2PDSML Day-1 👉 Environment Setup70 Minutes
- 2.3PDSML Day-2 👉 Lists in Python (Part-1)90 Minutes
- 2.4PDSML Day-3 👉 Lists in Python (Part-2)90 Minutes
- 2.5PDSML Day-4 👉 Flow Control in Python (Part-1)44 Minutes
- 2.6PDSML Day-5 👉 Flow Control in Python (Part-2)90 Minutes
- 2.7PDSML Day-6 👉 Flow Control in Python (Part-3)90 Minutes
- 2.8PDSML Day-7 👉 A Short Program: Guess the Number88 Minutes
- 2.9PDSML Day-8 👉 Functions in Python80 Minutes
- 2.10PDSML Quiz-1 👉 Python Basics10 Minutes22 Questions
- 2.11PDSML Day-9 👉 Data Preprocessing in Python (Part-1)85 Minutes
- 2.12PDSML Day-10 👉 Data Preprocessing in Python (Part-2)96 Minutes
- 2.13PDSML Day-11 👉 Data Preprocessing in Python (Part-3)90 Minutes
- 2.14PDSML Day-12 👉 Data Preprocessing in Python (Part-4)80 Minutes
- 2.15PDSML Quiz-2 👉 Data Preprocessing in Python10 Minutes10 Questions
- 2.16PDSML Day-13 👉 Simple Linear Regression in Python (Part-1)60 Minutes
- 2.17PDSML Day-14 👉 Simple Linear Regression in Python (Part-2)90 Minutes
- 2.18PDSML Day-15 👉 Simple Linear Regression in Python (Part-3)85 Minutes
- 2.19PDSML Day-16 👉 Multiple Linear Regression in Python (Part-1)
- 2.20PDSML Day-17 👉 Multiple Linear Regression in Python (Part-2)
- 2.21PDSML Day-18 👉 Multiple Linear Regression in Python (Part-3)94 Minutes
- 2.22PDSML Day-19 👉 Multiple Linear Regression in Python (Part-4)78 Minutes
- 2.23PDSML Day-20 👉 Multiple Linear Regression in Python (Part-5)60 Minutes
- 2.24PDSML Day-21 👉 Logistic Regression in Python (Part-1)64 Minutes
- 2.25PDSML Day-22 👉 Logistic Regression in Python (Part-2)73 Minutes
- 2.26PDSML Quiz-3 👉 Supervised Learnings in Python5 Minutes10 Questions
- 2.27PDSML Day-23 👉 K-Means Clustering in Python (Part-1)57 Minutes
- 2.28PDSML Day-24 👉 K-Means Clustering in Python (Part-2)79 Minutes
- 2.29PDSML Day-25 👉 K-Means Clustering in Python (Part-3)90 Minutes
- 2.30PDSML Day-26 👉 Principal Component Analysis – PCA (Part-1)82 Minutes
- 2.31PDSML Day-27 👉 Principal Component Analysis – PCA (Part-2)81 Minutes
- 2.32PDSML Day-28 👉 Principal Component Analysis – PCA (Part-3)90 Minutes
- 2.33PDSML Quiz-4 👉 Unsupervised Learnings in Python5 Minutes10 Questions
- 2.34PDSML Day-29 👉 Boxplot in Python Using Matplotlib76 Minutes
- 2.35PDSML Day-30 👉 Histogram and Bar Plot in Python Using Matplotlib77 Minutes
- 2.36PDSML Day-31 👉 Line Plot in Python Using Matplotlib75 Minutes
- 2.37PDSML Day-32 👉 Styling Plots for Publication with Matplotlib (Part-1)60 Minutes
- 2.38PDSML Day-33 👉 Styling Plots for Publication with Matplotlib (Part-2)84 Minutes
- RDSML Section32
- 3.2RDSML Day-1 👉 Environment Setup85 Minutes
- 3.3RDSML Day-2 👉 Data Preprocessing in R (Part-1)87 Minutes
- 3.4RDSML Day-3 👉 Data Preprocessing in R (Part-2)102 Minutes
- 3.5RDSML Day-4 👉 Data Preprocessing in R (Part-3)91 Minutes
- 3.6RDSML Quiz-1 👉 Data Preprocessing in R8 Minutes8 Questions
- 3.7RDSML Day-5 👉 Simple Linear Regression in R (Part-1)90 Minutes
- 3.8RDSML Day-6 👉 Simple Linear Regression in R (Part-2)90 Minutes
- 3.9RDSML Day-7 👉 Simple Linear Regression in R (Part-3)60 Minutes
- 3.10RDSML Day-8 👉 Multiple Linear Regression in R (Part-1)64 Minutes
- 3.11RDSML Day-9 👉 Multiple Linear Regression in R (Part-2)72 Minutes
- 3.12RDSML Day-10 👉 Multiple Linear Regression in R (Part-3)77 Minutes
- 3.13RDSML Day-11 👉 Decision Tree Regression in R (Part-1)77 Minutes
- 3.14RDSML Day-12 👉 Decision Tree Regression in R (Part-2)90 Minutes
- 3.15RDSML Day-13 👉 Decision Tree Regression in R (Part-3)88 Minutes
- 3.16RDSML Day-14 👉 Decision Tree Regression in R (Part-4)
- 3.17Codes for Random Forest Regression in R
- 3.18RDSML Quiz-2 👉 Regressions in R5 Minutes10 Questions
- 3.19RDSML Day-15 👉 Decision Tree Classification in R90 Minutes
- 3.20RDSML Day-16 👉 Random Forest Classification in R71 Minutes
- 3.21RDSML Day-17 👉 Classification for Polytomous Dependent Variable in R78 Minutes
- 3.22RDSML Day-18 👉 Naive Bayes in R (Part-1)52 Minutes
- 3.23RDSML Day-19 👉 Naive Bayes in R (Part-2)
- 3.24RDSML Quiz-3 👉 Classifications in R5 Minutes10 Questions
- 3.25RDSML Day-20 👉 Natural Language Processing (NLP) in R (Part-1)75 Minutes
- 3.26RDSML Day-21 👉 Natural Language Processing (NLP) in R (Part-2)69 Minutes
- 3.27RDSML Day-22 👉 Natural Language Processing (NLP) in R (Part-3)82 Minutes
- 3.28RDSML Day-23 👉 Natural Language Processing (NLP) in R (Part-4)90 Minutes
- 3.29RDSML Day-24 👉 Principal Component Analysis – PCA (Part-1)46 Minutes
- 3.30RDSML Day-25 👉 Principal Component Analysis (PCA) in R (Part-2)46 Minutes
- 3.31RDSML Day-26 👉 Principal Component Analysis (PCA) in R (Part-3)51 Minutes
- 3.32RDSML Day-27 👉 Principal Component Analysis (PCA) in R (Part-4)57 Minutes
- 3.33RDSML Day-28 👉 Principal Component Analysis (PCA) in R (Part-5)50 Minutes