This course contains the course content of the Hands-on Virtual Workshop on Python for Data Science & Machine Learning (PDSML Batch-8).
āĻāĻ āĻā§āϰā§āϏāĻāĻŋāϤ⧠āĻāĻĒāύāĻžāĻā§ āĻŽā§āĻ ā§§ā§¨ āĻāĻŋ āĻā§āϏ āϏā§āĻāĻžāĻĄāĻŋ āϏāϞāĻ āĻāϰ⧠āĻĻā§āĻāĻžāύ⧠āĻšāĻŦā§ āϝāĻžāϰ āĻĢāϞāĻļā§āϰā§āϤāĻŋāϤ⧠āĻāĻĒāύāĻžāϰ āĻĒāĻžāĻāĻĨāύā§āϰ āĻŦā§āϏāĻŋāĻ āĻā§ āĻ ā§āϝāĻžāĻĄāĻāĻžāύā§āϏāĻĄ āĻāĻŦāĻ āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻ āĻāϰ A āĻā§ Z āĻļā§āĻāĻž āĻšā§ā§ āϝāĻžāĻŦā§āĨ¤ āϝāĻž āĻāĻĒāύāĻžāϰ āĻāύā§āϝ āĻšāϤ⧠āĻĒāĻžāϰ⧠āĻĄā§āĻāĻž āϏāĻžā§ā§āύā§āϏ āĻāĻŦāĻ āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻ āĻāϰ āĻāĻĒāϰ⧠āĻā§āϝāĻžāϰāĻŋā§āĻžāϰ āĻā§āĻžāϰ āĻĒā§āϰāĻĨāĻŽ āϏāĻĢāϞ āĻĒāĻĻāĻā§āώā§āĻĒāĨ¤
đ āĻāĻ āĻā§āĻžāϰā§āĻāĻļāĻĒāĻāĻŋāϤ⧠āĻā§ā§āύ āĻāϰāϞ⧠āĻāĻĒāύāĻŋ āϝ⧠āĻŦāĻŋāώā§āĻā§āϞāĻŋ āĻāĻāĻĻāĻŽ āĻšāĻžāϤ⧠āĻāϞāĻŽā§ āĻļāĻŋāĻāϤ⧠āĻĒāĻžāϰāĻŦā§āύ:
- Customer Churn Analysis – Predict which customers are likely to leave. Skills: Pandas (EDA), data visualization, logistic regression.
- Customer Segmentation – Segment customers based on spending patterns. Skills: Unsupervised learning, data visualization, clustering (K-Means, hierarchical).
- Fake News Detection – Classify whether a news article is real or fake. Skills: Logistic regression, TF-IDF, deep learning, text preprocessing, NLP basics.
- Diabetes Prediction – Predict diabetes likelihood based on medical measurements. Skills: Classification, feature selection, sensitivity & specificity.
- Heart Disease Prediction – Predict the presence of heart disease using patient features. Skills: Logistic regression, random forest, feature importance.
- Breast Cancer Detection – Classify tumors as malignant or benign. Skills: Support Vector Machines, model evaluation.
- Image Classification for Medical Diagnosis – Detect pneumonia from X-ray scans. Skills: CNNs, transfer learning (ResNet, EfficientNet), Grad-CAM interpretability.
- Plant Disease Detection – Detect crop diseases from leaf images. Skills: CNNs, image classification, and model deployment in Agriculture.
- AI for Climate/Environment – Predict pollution levels or forecast rainfall. Skills: Time series analysis, regression, dashboards visualization.
- Crop Yield Prediction – Predict yield based on rainfall, temperature, and fertilizer usage. Skills: Regression models, feature engineering, time series forecasting.
- Crop Recommendation System – Recommend the best crop for given soil conditions (N, P, K, pH, rainfall). Skills: Classification (decision trees, random forests, SVMs).
- Climate Impact on Agriculture – Study how temperature/rainfall changes affect crop yields. Skills: Time series, regression, causal modeling.
đ āĻāĻĒāύāĻŋ āĻā§āύ āĻāĻ āĻā§āϰā§āϏāĻāĻŋāϤ⧠āĻ āĻāĻļāĻā§āϰāĻšāĻŖ āĻāϰāĻŦā§āύ?
âŋ NBICT LAB-āĻāϰ āĻ āύāϞāĻžāĻāύ āĻā§āϰā§āϏ āϏāĻŽā§āĻšā§āϰ āĻ āϧāĻŋāĻāĻžāĻāĻļ āϞāĻžāϰā§āύāĻžāϰāĻ āĻŦāĻŋāĻļā§āĻŦāĻŦāĻŋāĻĻā§āϝāĻžāϞā§ā§āϰ āĻļāĻŋāĻā§āώāĻ/āĻŦāĻŋāĻāĻŋāύā§āύ āĻāĻŦā§āώāĻŖāĻž āĻĒā§āϰāϤāĻŋāώā§āĻ āĻžāύā§āϰ āĻāĻŦā§āώāĻ/āĻŽāĻžāϏā§āĻāĻžāϰā§āϏ/āĻ āύāĻžāϰā§āϏ āĻ āĻĨāĻŦāĻž āĻĒāĻŋāĻāĻāĻāĻĄāĻŋ āĻļāĻŋāĻā§āώāĻžāϰā§āĻĨā§āĨ¤ āĻŦāĻŋāĻāϤ āϏāĻŽā§ā§ āϝā§āϏāĻāϞ āϏāĻŽā§āĻŽāĻžāύāĻŋāϤ āϞāĻžāϰā§āύāĻžāϰ āύāĻŋā§āĻŽāĻŋāϤ āĻā§āϞāĻžāϏ āĻāϰāĻžāϰ āĻŽāĻžāϧā§āϝāĻŽā§ āϏāĻĢāϞāĻāĻžāĻŦā§ āĻŦāĻŋāĻāĻŋāύā§āύ āĻā§āϰā§āϏ āϏāĻŽāĻžāĻĒā§āϤ āĻāϰā§āĻā§āύ āϤāĻžāĻāĻĻā§āϰ āĻĒā§āϰāϤā§āϝā§āĻā§āĻ NBICT LAB-āĻāϰ āĻļāĻŋāĻāύ āĻĒāĻĻā§āϧāϤāĻŋāϰ āĻā§ā§āϏ⧠āĻĒā§āϰāĻļāĻāϏāĻž āĻāϰā§āĻā§āύāĨ¤ āĻāĻĒāύāĻŋ āύāĻŋāĻā§āϰ āϞāĻŋāĻāĻ āĻĻā§āĻāĻŋ āĻĒāϰāĻŋāĻĻāϰā§āĻļāύ āĻāϰāĻžāϰ āĻŽāĻžāϧā§āϝāĻŽā§ āĻŦāĻŋāĻāϤ āĻŦā§āϝāĻžāĻāĻā§āϞā§āϰ āϞāĻžāϰā§āύāĻžāϰāĻĻā§āϰ āĻŽāϤāĻžāĻŽāϤ āĻā§āύ⧠āύāĻŋāϤ⧠āĻĒāĻžāϰāĻŦā§āύ:
āϞāĻŋāĻāĻ – ā§§: https://youtube.com/playlist?list=PLoL-aNyxKqYp0olbkwCTBwm3_VZhj1a2O
āϞāĻŋāĻāĻ – ⧍: https://g.page/nbict-lab
âŋ āϤā§āϞāύāĻžāĻŽā§āϞāĻāĻāĻžāĻŦā§ āĻāĻŽ āĻāϰāĻā§ āĻāϤ⧠āĻāĻžāϞ⧠āĻŽāĻžāύā§āϰ āĻĒā§āϰāĻļāĻŋāĻā§āώāĻŖ āϏā§āĻŦāĻž āϞāĻžāĻā§āϰ āϏā§āϝā§āĻ āĻāĻĒāύāĻŋ āĻā§āĻŦ āĻāĻŽāĻ āϞāĻžāĻ āĻāϰāĻŦā§āύāĨ¤
âŋ āĻĒā§āϰāϤā§āϝā§āĻāĻāĻŋ āĻŦāĻŋāώā§āĻāĻŋāϤā§āϤāĻŋāĻ āĻā§āϏ āϏā§āĻāĻžāĻĄāĻŋ āϏāĻšāĻ āĻāĻŦāĻ āĻĒā§āϰāĻžāĻā§āĻāϞ āĻŦāĻžāĻāϞāĻž āĻāĻžāώāĻžā§ āĻāϞā§āĻāύāĻž āĻāϰāĻž āĻšāĻŦā§āĨ¤
âŋ āϏāĻŋāϞā§āĻŦāĻžāϏ⧠āĻāϞā§āϞā§āĻāĻŋāϤ āĻĒā§āϰāϤā§āϝā§āĻāĻāĻŋ āĻā§āϏ āϏā§āĻāĻžāĻĄāĻŋ-āϰ āĻ āύā§āϤāϰā§āĻāϤ āĻā§āĻāĻāĻŋāύāĻžāĻāĻŋ āĻŦāĻŋāώā§āĻā§āϞ⧠āĻŦā§āϝāĻŦāĻšāĻžāϰāĻŋāĻāĻāĻžāĻŦā§ āϏāϰāĻžāϏāϰāĻŋ Python āĻāĻŦāĻ Google Colab āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰ⧠āĻāϞā§āĻāύāĻž āĻāϰ⧠āĻĻā§āĻāĻžāύ⧠āĻšāĻŦā§āĨ¤
âŋ āĻĒā§āϰāϤā§āϝā§āĻāĻāĻŋ āĻŦāĻŋāώā§āĻāĻŋāϤā§āϤāĻŋāĻ āĻ āύā§āĻļā§āϞāύ āĻĢāĻžāĻāϞ āĻāĻĒāύāĻžāĻā§ āĻĒā§āϰāĻĻāĻžāύ āĻāϰāĻž āĻšāĻŦā§ āϝāĻžāϤ⧠āĻāϰ⧠āĻāĻĒāύāĻŋ āĻāύā§āϏāĻā§āϰāĻžāĻā§āĻāϰā§āϰ āϏāĻžāĻĨā§ āϏāĻžāĻĨā§ āĻ āύā§āĻļā§āϞāύ āĻāϰāϤ⧠āĻĒāĻžāϰā§āύāĨ¤
âŋ āĻā§āϰā§āϏ āĻāϰā§āĻāĻžāĻāĻā§ āĻĒā§āϰāϤā§āϝā§āĻ āϞāĻžāϰā§āύāĻžāϰā§āϰ āĻāĻā§āĻŦāύ āĻ ā§āϝāĻžāĻāϏā§āϏ āĻĨāĻžāĻāĻŦā§āĨ¤
âŋ āϏāĻĢāϞāĻāĻžāĻŦā§ āĻā§āϰā§āϏ āϏāĻŽāĻžāĻĒā§āϤāĻāĻžāϰ⧠āϞāĻžāϰā§āύāĻžāϰāĻĻā§āϰ āϏāĻžāϰā§āĻāĻŋāĻĢāĻŋāĻā§āĻ āĻĒā§āϰāĻĻāĻžāύ āĻāϰāĻž āĻšāĻŦā§āĨ¤
âŋ āĻāĻ āĻā§āϰā§āϏāĻāĻŋ āĻāϰāĻž āĻĨāĻžāĻāϞ⧠āĻŦāĻŋāĻĻā§āĻļā§ āĻāĻā§āĻ āĻļāĻŋāĻā§āώāĻžāϰ āĻāύā§āϝ āĻāĻŽāύ āĻāϰāĻž āĻāĻŦāĻ āĻāĻŦā§āώāĻŖāĻž āĻāϰā§āĻāĻŋāĻā§āϞ āĻĒā§āϰāĻāĻžāĻļ āĻāϰāĻž āϏāĻšāĻāϤāϰ āĻšāĻŦā§āĨ¤
Course Features
- Lectures 23
- Quiz 0
- Duration Lifetime access
- Skill level All levels
- Language Bangla
- Students 127
- Certificate Yes
- Assessments Self
- 4 Sections
- 23 Lessons
- Lifetime
- Section-1: Customer Churn AnalysisPredict which customers are likely to leave11
- 1.1PDSML Day-1 đ Making the Environment Ready85 Minutes
- 1.2PDSML Day-2 đ Importing Libraries and Dataset90 Minutes
- 1.3PDSML Day-3 đ Data Preprocessing (Part-1)90 Minutes
- 1.4PDSML Day-4 đ Data Preprocessing (Part-2)90 Minutes
- 1.5PDSML Day-5 đ Data Preprocessing (Part-3)90 Minutes
- 1.6PDSML Day-6 đ Data Preprocessing (Part-4)60 Minutes
- 1.7PDSML Day-7 đ What is Logistic Regression?70 Minutes
- 1.8PDSML Day-8 đ Training the Baseline Model for Churn Analysis90 Minutes
- 1.9PDSML Day-9 đ Churn Analysis Model Evaluation (Part-1)90 Minutes
- 1.10PDSML Day-10 đ Churn Analysis Model Evaluation (Part-2)90 Minutes
- 1.11PDSML Day-11 đ Exploratory Descriptive Analysis on Churn Data90 Minutes
- Section-2: Customer SegmentationSegment customers based on spending patterns.4
- 2.1PDSML Day-12 đ Customer Segmentation Data Preprocessing90 Minutes
- 2.2PDSML Day-13 đ K-Means Clustering Intuition and the Elbow Method70 Minutes
- 2.3PDSML Day-14 đ Finding the Optimum Number of Clusters80 Minutes
- 2.4PDSML Day-15 đ Building the Clustering Model and Finalizing Clusters90 Minutes
- Section-3: Fake News DetectionClassify whether a news article is real or fake.5
- 3.1PDSML Day-16 đ Building Fake News Detector (Part-1)60 Minutes
- 3.2PDSML Day-17 đ What is TF-IDF Score?60 Minutes
- 3.3PDSML Day-18 đ TF-IDF Score Python Verification58 Minutes
- 3.4PDSML Day-19 đ Building Fake News Detector (Part-2)90 Minutes
- 3.5PDSML Day-20 đ Building Fake News Detector (Part-3)90 Minutes
- Section-4: Diabetes PredictionPredict diabetes likelihood based on medical measurements.3






